1,853 research outputs found

    Compressed sensing for enhanced through-the-wall radar imaging

    Get PDF
    Through-the-wall radar imaging (TWRI) is an emerging technology that aims to capture scenes behind walls and other visually opaque materials. The abilities to sense through walls are highly desirable for both military and civil applications, such as search and rescue missions, surveillance, and reconnaissance. TWRI systems, however, face with several challenges including prolonged data acquisition, large objects, strong wall clutter, and shadowing effects, which limit the radar imaging performances and hinder target detection and localization

    A Rank-Deficient and Sparse Penalized Optimization Model for Compressive Indoor Radar Target Localization

    Get PDF
    This paper proposes a rank-deficient and sparse penalized optimization method for addressing the problem of through-wall radar imaging (TWRI) in the presence of structured wall clutter. Compressive TWRI enables fast data collection and accurate target localization, but faces with the challenges of incomplete data measurements and strong wall clutter. This paper handles these challenges by formulating the task of wall-clutter removal and target image reconstruction as a joint low-rank and sparse regularized minimization problem. In this problem,  the low-rank regularization is used to capture the low-dimensional structure of the wall signals and the sparse penalty is employed to represent the image of the indoor targets. We introduce an iterative algorithm based on the forward-backward proximal gradient technique to solve the large-scale optimization problem, which simultaneously removes unwanted wall clutter and reconstruct an image of indoor targets. Simulated and real radar data are used to validate the effectiveness of the proposed rank-deficient and sparse regularized optimization approach

    KPZ equation in one dimension and line ensembles

    Full text link
    For suitably discretized versions of the Kardar-Parisi-Zhang equation in one space dimension exact scaling functions are available, amongst them the stationary two-point function. We explain one central piece from the technology through which such results are obtained, namely the method of line ensembles with purely entropic repulsion.Comment: Proceedings STATPHYS22, Bangalore, 200

    Optimal Use of Vitamin D When Treating Osteoporosis

    Get PDF
    Inadequate serum 25-hydroxyvitamin D (25[OH]D) concentrations are associated with muscle weakness, decreased physical performance, and increased propensity in falls and fractures. This paper discusses several aspects with regard to vitamin D status and supplementation when treating patients with osteoporosis in relation to risks and prevention of falls and fractures. Based on evidence from literature, adequate supplementation with at least 700 IU of vitamin D, preferably cholecalciferol, is required for improving physical function and prevention of falls and fractures. Additional calcium supplementation may be considered when dietary calcium intake is below 700 mg/day. For optimal bone mineral density response in patients treated with antiresorptive or anabolic therapy, adequate vitamin D and calcium supplementation is also necessary. Monitoring of 25(OH)D levels during follow-up and adjustment of vitamin D supplementation should be considered to reach and maintain adequate serum 25(OH)D levels of at least 50 nmol/L, preferably greater than 75 nmol/L in all patients

    A prospective multi-center observational study of children hospitalized with diarrhea in Ho Chi Minh City, Vietnam.

    Get PDF
    We performed a prospective multicenter study to address the lack of data on the etiology, clinical and demographic features of hospitalized pediatric diarrhea in Ho Chi Minh City (HCMC), Vietnam. Over 2,000 (1,419 symptomatic and 609 non-diarrheal control) children were enrolled in three hospitals over a 1-year period in 2009-2010. Aiming to detect a panel of pathogens, we identified a known diarrheal pathogen in stool samples from 1,067/1,419 (75.2%) children with diarrhea and from 81/609 (13.3%) children without diarrhea. Rotavirus predominated in the symptomatic children (664/1,419; 46.8%), followed by norovirus (293/1,419; 20.6%). The bacterial pathogens Salmonella, Campylobacter, and Shigella were cumulatively isolated from 204/1,419 (14.4%) diarrheal children and exhibited extensive antimicrobial resistance, most notably to fluoroquinolones and third-generation cephalosporins. We suggest renewed efforts in generation and implementation of policies to control the sale and prescription of antimicrobials to curb bacterial resistance and advise consideration of a subsidized rotavirus vaccination policy to limit the morbidity due to diarrheal disease in Vietnam

    Preparation of self-assembly silica redox nanoparticles to improve drug encapsulation and suppress the adverse effect of doxorubicin

    Get PDF
    Background and Purpose: The utilization of doxorubicin (DOX) in clinal trials is also challenging owing to its adverse effects, including low oral bioavailability, generation of reactive oxygen species (ROS), cardiotoxicity, and epithelial barrier damage. Recently, scavenging of ROS reduced the cytotoxicity of DOX, suggesting a new approach for using DOX as an anticancer treatment. Thus, in this study, non-silica and silica redox nanoparticles (denoted as RNPN and siRNP, respectively) with ROS scavenging features have been designed to encapsulate DOX and reduce its cytotoxicity. Experimental Approach: DOX-loaded RNPN (DOX@RNPN) and DOX-loaded siRNP (DOX@siRNP) were prepared by co-dissolving DOX with RNPN and siRNP, respectively. The size and stability of nanoparticles were characterized by the dynamic light scattering system. Additionally, encapsulation efficiency, loading capacity, and release profile of DOX@RNPN and DOX@siRNP were identified by measuring the absorbance of DOX. Finally, the cytotoxicity of DOX@RNPN and DOX@siRNP against normal murine fibroblast cells (L929), human hepatocellular carcinoma cells (HepG2), and human breast cancer cells (MCF-7) were also investigated. Key results: The obtained result showed that RNPN exhibited a pH-sensitive character while silanol moieties improved the stability of siRNP in physiological conditions. DOX@RNPN and DOX@siRNP were formed at several tens of nanometers in diameter with narrow distribution. Moreover, DOX@siRNP stabilized under different pH buffers, especially gastric pH, and improved encapsulation of DOX owing to the addition of silanol groups. DOX@RNPN and DOX@siRNP maintained anticancer activity of DOX against HepG2, and MCF-7 cells, while their cytotoxicity on L929 cells was significantly reduced compared to free DOX treatment. Conclusion: DOX@RNPN and DOX@siRNP could effectively suppress the adverse effect of DOX, suggesting the potential to become promising nanomedicines for cancer treatments

    Retrieval of Aerosol Optical Depth Using Satellite Data Associated with Ground-based Observations over Urban and Rural Areas

    Get PDF
    Optičku je dubinu aerosola (AOD) moguće točno izračunati na temelju uzastopnih mjerenja izravnog i difuznog Sunčeva zračenja na tlu. Međutim, prostorna pokrivenost i frekvencija lokacije uzrokuju određena ograničenja. Stoga su satelitske snimke ispravan alat za dobivanje proizvoda optičke dubine aerosola s više prostornih informacija i obrazaca raspodjele aerosola. Daljinskim istraživanjima aerosola možemo bolje razumjeti najbolji pristup računanju optičke dubine aerosola u urbanim i ruralnim područjima i mogu se uočiti razlike zbog svojstava površinske reflektivnosti. Ovaj se članak bavi konceptima smanjenja kontrasta i pristupima tamnih meta koji se ispituju snimkama Landsata i opažanjima Sunčevog fotometra za povezivanje raspodjele optičke dubine aerosola iznad grada Taipeija u Tajvanu. Za područja sa svijetlim površinama kao što su gradovi navedeni se koncepti primjenjuju metodom koeficijenta disperzije zajedno sa Sunčevim fotometrom kako bi se u velikoj mjeri smanjile pogreške. Za razliku od toga, algoritam tamne mete s odnosom površinske refleksije između plavih (0,49 μm), crvenih (0,66 μm) i infracrvenih (2,1 μm) spektralnih pojaseva prikladan je za vlažno tlo i područja s vegetacijom. Računanje prostorne raspodjele optičke dubine aerosola uspoređuje se s proizvodima MODIS AOD-a i AERONET-a kako bi se provjerila točnost rezultata. RMSE je bio u rasponu od 0,2 do 0,4 i oko 50% podataka bilo je unutar granica očekivane pogreške (EE=± (0,05+0,15 AODsunphometer).Aerosol optical depth (AOD) can be retrieved accurately with sequential ground-based measurements of direct and diffuse solar radiance. However, spatial coverage and location frequency cause certain limitations. Hence, satellite image data are a proper tool for obtaining aerosol optical depth products with more spatial information and patterns of aerosol distribution. Currently, aerosol remote sensing may enhance our understanding of the optimal approach to AOD retrieval over urban and rural areas, and how it differs due to the characteristics of surface reflectivity. The article deals with the concepts of contrast reduction, and dark target approaches are examined using Landsat imaging and the observation of a sun photometer for integrating aerosol optical depth distribution over the city of Taipei in Taiwan. For areas with bright surfaces, such as urban areas, the above concepts were applied using the dispersion coefficient method with a sun photometer, in order to reduce errors considerably in the product. In contrast, a dark target algorithm with a relationship of surface reflectance between the blue (0.49 μm), red (0.66 μm), and infrared (2.1 μm) spectral bands is suitable for moist soils and vegetation areas. The retrieval of AOD spatial distribution is compared with MODIS AOD products and AERONET to verify the accuracy of the results. The RMSE ranged from 0.2 to 0.4, and about 50% of the data were within expected error margins (EE=± (0.05+0.15 AODsunphotometer)
    • …
    corecore